feature/rush-cancel Additions

Multiple new features have been made in this branch. The functionality for each will be
explained, both on the gameplay side and the coding side.

Features added:
e Rush Cancels

e Screen Freezing
e Speed Trails

Rush Cancels

-

!
[

METEE ED

The Rush Cancel is the big new gameplay feature added in this branch.

There are three versions of the Rush Cancel: a running version, a jumping version, and
a falling version.

The running version makes the player run forward about %5 of the screen. This is
performed if Rush Cancel is inputted on the ground.

The jumping version makes the player do a quick jump. This is performed if Rush
Cancel is inputted on the ground and you hold up by the end of the screen freeze.

The falling version makes the player quickly fall to the ground. This is performed if Rush
Cancel is inputted in the air.

Activating Rush Cancel costs 50 meter, and all versions of the Rush Cancel are
projectile invincible. You can perform Rush Cancels at any time when you are not
getting hit.

The Code

Multiple new variables and states have been added for Rush Cancels. These are
defined in oPlayerController/Create.

The process for the Rush Cancel goes by a bit of a step-by-step process in
oPlayerController/Step.

1. To activate the Rush Cancel, the game checks for a multitude of things.

a. The first check is if it is inputted properly. There are two ways to perform
the Rush Cancel. The first method is to press the run button and the
special button at the same time (within 4 frames of each other). The
second method is to double tap dash and press the special button at the
same time. The second input of the double tap dash and the special
button have to be inputted within 7 frames of each other.

b. The second check is if the player is not in a state where they are unable to
act (i.e. any state where they are getting hit).

c. The third check is if the player isn’t getting it at the moment. There should
be no hitstun and no blockstun.

d. The fourth check is if the player has at least 50 meter, as that is the
required amount of meter to perform Rush Cancels.

e. The fifth and final check is if the player has already activated Rush Cancel
and it hasn’t completed yet.

unEuttnnJJ

2. Once all of the checks have been completed, the game then determines if the
Rush Cancel can happen immediately or if a buffer should be activated.

If the opponent has already performed a screen freeze, a buffer is

activated to perform the Rush Cancel after the opponent’s screen freeze is

finished. The only exception to this is if both players activate Rush

Cancels at the exact same t|me

a.

Instances"”, oRushCancel);

If the player is grabbing the opponent, activate the buffer to wait for after
the grab move is complete

b.

opponent.isGrabbed)

oRushCancel);

rcActivated allows the game to recognize that the player is performing a
Rush Cancel as they enter the SCREEN_FREEZE state and
rcFreezeTimer determines how long the player is in the

SCREEN_FREEZE state. The player also becomes projectile invincible
once they activate the Rush Cancel so they are invincible to them during
the freeze. The importance of lines 221 - 224 will be explained in the
Screen Freeze section.

d. This is more like step 2.5. If the buffer is activated, the code goes through
a number of if statements outside of the giant Rush Cancel if statement.

28 |Elif (re erTimer » rcBufferInterval)

ponent != noone && !opponent.activateFreeze

, "Instances™, cRushCancel);

rcBufferTimer++;

i. The first if statement deactivates the buffer if it is inputted too soon
during screen freezes. This prevents players from accidentally
inputting it during longer bits of screen freezing, such as during
supers.

i. The second if statement checks if the screen isn’t already frozen or
if the player isn’t grabbing the opponent anymore, since those are
the reasons the buffer is activated in the first place.

iii. The third if statement simply increments the buffer timer if the buffer
is active.

. Now the player is in the SCREEN_FREEZE state. The following code occurs if

the player is performing a Rush Cancel.

587 }
The timer increments during the screen freeze. Once it reaches over 30 frames,
rcActivated is set to false, the timer is reset, and the screen freeze is deactivated.
From there, the game determines which Rush Cancel state to go to.

a. If the player is in the air, go to RUSH_CANCEL_AIR.

b. If the player is on the ground and they are holding up, go to
RUSH_CANCEL_UP. An upward force is applied beforehand since it is
basically a jump.

c. Otherwise, go to RUSH_CANCEL_FORWARD. rcForwardTimer is a timer
to determine how long the player runs for in this state.

4. The final step in the Rush Cancel process is what happens in each of the Rush
Cancel states. Each state uses global movement variables that can be found in
oGlobalVars/Create.

a. RUSH_CANCEL_FORWARD is basically a combination of the
RUN_FORWARD and RUN_BACKWARD states. The player moves in a
similar way to RUN_FORWARD, but it also has a duration and it can’t be
interrupted by other forms of movement like in RUN_BACKWARD.

isSuperlumping = f
h::;r:“ﬂt.;b;cTU”L

projectileInvincik

5 -_-.i'_ tack E:I_JT_ '_|:|||: att.ﬁ{l-; } 3

HandleWalkingOffPlatforms(false);

SpeedTrail(e.3,

break;

b. RUSH_CANCEL_UP is basically a super simplified form of the JUMP

racterSprites. jump_Sprite;

nTurn und =

projectileInvincib

PressAttackButton(attack);

SpeedTrail(e

}
1 break;

c. RUSH_CANCEL_AIR is extremely similar to RUSH_CANCEL_UP, but the
movement is different.

rsprites. jump_Sprite;

al.rcAirHorizontalSpeed * image xscale;

ackButton(attack);

SpeedTrail(@.:
¥

Ereak;

5. Once the player exits these states, the entire Rush Cancel is complete.

Screen Freezing

Screen Freezing is a new feature created alongside the Rush Cancels. It is a new
system that’s implemented in a way so it can be used for different scenarios outside of
Rush Cancels.

WARNING: The screen freezing system is extremely delicate. All variables need to be
used carefully, or else the system will break.

There are multiple new variables created for screen freezing and a new state is added
called SCREEN_FREEZE. These are created in oPlayerController/Create.

ac

In order to activate the screen freeze, you need to set multiple different variables. The
Rush Cancel is shown here as an example.

y» "Instances", ocRushCancel);

Lines 221 - 223 are needed to activate screen freezing, while line 224 is technically
optional.

1. global.hitstop needs to be set to 0. If the players are still in hitstop during the
screen freeze, this can cause all sorts of weird stuff to happen. The player
activating the Rush Cancel doesn’t enter the SCREEN_FREEZE state, allowing
them to move around while the screen is frozen, and the opponent is stuck in
SCREEN_FREEZE forever. This could probably be implemented better, but this
method has minimal issues for now.

2. activateFreeze needs to be set to true. There are multiple places in the code
where both players read this variable and if either player has activated it. This is
mostly used to force the opponent to freeze in place.

3. A new global variable called freezeTimer was created in oGameManager/Create.
This is primarily used to freeze the round timer during the screen freeze, but it is
also used in other places outside of oPlayerController, such as oProjectileBase to
freeze it in place. | might create a separate variable for those cases later down
the line in case we want to only freeze the timer and nothing else.

4. In most cases, you would also need to set the player’s state to
SCREEN_FREEZE upon activating it so the player is frozen. However, you can
technically omit this if you don’t want the player to be frozen during the screen
freeze. This can be used in this case for supers and time stop moves for
example.

When the player is in the SCREEN_FREEZE state, they don’t animate.
if (global.hitstop == @ &&

animTimer++;

¥
else if (global.hitstop != @)
.

If the opponent has activated screen freeze, the player gets frozen. The if statement
that reads this is located under the state == eState. SCREEN_FREEZE if statement.

If the player’s current state is SCREEN_FREEZE because the opponent activated it, the
following if statement located within the state == eState. SCREEN_FREEZE if statement
is run to exit the state once screen freeze is deactivated. The player’s previous state
and movement before the freeze is restored.

If you are going to create a feature that will freeze the screen, you need to create two
variables for that feature to make the screen freeze work properly: a boolean to
determine if the feature is being used, and an int timer to determine how long the screen
freeze will last for. Structure it in the same way as with the Rush Cancel.

554 | if (rcActivated)

You can place this if statement inside or outside of the SCREEN_FREEZE if statement
depending on if you want the player to be frozen, but you must make sure to deactivate
the boolean, reset the timer, set activateFreeze to false, and set global.freezeTimer to
false.

Speed Trails

Speed trails are a small but aesthetically pleasing feature that makes the game look
much cooler. The system itself is very simple and easy to implement.

A new variable is created in oPlayerController called speedTrailTimer and a new object
was created called oSpeedTrail. oSpeedTrail basically takes a copy of the current sprite
for the player and then fades it over time. It even copies the player’s color palette.

To create a speed trail sprite, you have to call a script called SpeedTrail.

3 =1ﬂnuflon SpeedTrail(setStartingOpacity, setFadeSpeed, interwval)

"
var 0 ct_i
var thisCharacter =
var opponentCharacter
with (instance)

iex = this.image_index;
if (thisCharacter == opponentCharacter

-this.dim

.plPalettelID, this.s

It takes three parameters:
e setStartingOpacity sets the opacity of the sprite once you create the instance.
This value should be between 0 and 1.

e setFadeSpeed sets the speed at which the sprite fades away. The sprite fades
every frame, so it would be a good idea to set the fade to a very small number
like 0.02.

e interval is how often a new sprite is created for the speed trail. Whenever
speedTrailTimer gets bigger than this number, a new sprite is created and the
timer resets.

You can use this function in any state or any part of oPlayerController/Step to create
speed trails.

IMPORTANT NOTE: This function only works with the player characters. If you want to
create speed trails for things like projectiles, a new system will need to be created for
them.

