Spirit Data: How it Works

Spirit data has now been implemented in the game, and tons of things were added and
changed along the way. I'll give a general overview on how everything works and
explain some things that were reworked to make this work.

Index:
e Smooth Criminal Functionality

e Smooth Criminal object
e Attacks

e Other Scripts/Health

Jay now has a spirit that fights alongside him, called Smooth Criminal (abbreviated to
SC). There are a ton of rules that he follows to keep him balanced, complex, and fun.

e Jay switches between two different states: Spirit OFF and Spirit ON. These two
states switch between two completely different movesets.

o In Spirit OFF, Jay fights by himself and SC shows up for only a few moves.
Jay is a bit slow and his attacks are weak here.

o In Spirit ON, SC stands by Jay’s side and fights in his stead. SC follows
Jay’s movement and he has his own attacks. Jay can double jump in this
state too.

e SC has his own health bar. He will take damage whenever Jay gets hurt in Spirit
ON. He recovers health over time whenever he’s away in Spirit OFF. If he runs
out of health, Jay enters a Spirit BREAK state where he is locked to his Spirit
OFF moveset and he is unable to summon SC until SC’s health fully regenerates
again.

e To summon SC and switch to Sprint ON, use Neutral Special. The enhancer will
make SC do a lunge punch that goes through the opponent, allowing him to stay
a certain distance away from Jay for sandwich pressure.

e Jay has two supers, one in Spirit OFF and one in Spirit ON.

o In Spirit OFF, Jay enters a special state where he and SC can attack at
the same time, essentially combining Spirit OFF and Spirit ON. This allows
Jay to maximize his offensive pressure and combos. SC doesn’t take
damage in this state and this state only lasts for a certain amount of time.
Jay cannot activate this state when he is in Spirit BREAK.

o In Spirit ON, SC stops time. This move has a long startup, so it is hard to
set it up or combo into it. However, if it connects, the opponent is frozen in
place and Jay and SC can pummel them. The time stop rapidly drains
Jay’s meter, and the time stop ends when Jay runs out of meter.

The main goal of this overall design is to make Jay a puppet character where he needs
to fight alongside SC effectively to keep the upper hand in a fight.

To begin, Smooth Criminal is his own character that inherits from oPlayerController. This
is because he has his own data and attacks separate from Jay.

Create, and Step are different from the rest of the characters. Draw was edited to
remove shader data for now because Smooth Criminal doesn’t have any palette data at
the moment.

Create simply makes some new variables and creates a copy of its moveset, similar to
Jay. This is for certain moves Smooth Criminal has that will be explained later.

All of the host variables refer to Jay, since he is Smooth Criminal’s host. They will
constantly transfer data back and forth with each other. The variable host refers to Jay
the character with the move data and hostObject refers to Jay the game object with
movement and states.

Step however, has many differences from oPlayerController/Step. So much so that it
doesn’t even use event_inherited() because that would complicate and break things. I'll
explain the changes as | go.

Jay also has some new data in oCharacterController/Create to link him to Smooth
Criminal (SC).

f

The variable spirit refers to SC the character with the move data and spiritObject refers
to SC the game object with movement and states.

So to begin with on how SC works, there are a number of functions that were omitted
from SC’s Step to prevent duplication of events.
e SC does not have his own attack button. Instead, all of his attacks are executed
when Jay executes moves. Since Jay has to pose when SC does attacks in Spirit
ON, those poses are moves without hitboxes and SC attacks in tandem with
them. This is triggered in PressAttackButton.

=] function SetS Data(enhancement, move, attack)

tSummoned && move.SpiritData.PerformAttack)

This ensures that Jay and SC are in sync and it prevents potential desync
infinites.

e I'munsure if SC should be able to grab his opponents, so for now | made it so he
can’t by not matching Jay’s grab state with SC’s grab state.

e SC is unable to perform Rush Cancels. Instead, when Jay performs them, SC
enters the Rush Cancel states with him. This is to prevent the player from
spending 100 meter to perform Rush Cancels when SC is activated.

If you look through the code, you’ll notice that SC still has his own movement. The
movement still mirrors that of Jay’s, but this also allows for potential movement desyncs
(for example, if Jay and SC sandwich the opponent, Jay could backdash while SC
performs a running jump). | decided to include this for experimentation and potential
advanced tech.

For the attacks themselves, there is a lot to go over for how attacks work with SC. Since
| edited and added a number of scripts.
In the Ground/Crouching/JumpingAttackScripts, | added a ton of code for
summoning/deactivating spirits.
e Firstly, spirits have a Vulnerable variable where if they perform a move that has
this variable set to true, it would die instantly. This is checked when running
PerformAttack.

ctedCharacter.UniqueData.5

PerformAttack(moveToDo, true)
if (moveToDo.SpiritData.Vulnerable)
{

vulnerable = tru

}
)
else
{

PerformAttack(moveToDo, false)

)

e If you perform a move that activates/deactivates Spirit ON, the state will switch
when the move ends. However, if Jay is interrupted before the move ends, the
state is still supposed to switch. For this reason, pendingToggle is used to make
this work.

(selectedCharacter.UniqueData.SpiritData == 1 && rTIO'.-'ETDDD‘Dp ritData. ToggleState && IspiritBroken)

pe ndingToggle =

e Next, it checks if Jay’s move has the spirit attack in Spirit OFF, which leads to its
own script.

(selectedCharacter.UnigueData.SpiritData == 1 && !spiritState && nm\t.gTo[}o,‘_.p.n"_.:_';"_‘}'»_‘r.'u;'um-\ln‘_-wp.r.'_..'r && \a:p\r\":!r:j'u.‘-.‘._-ru'\

SummonInSpiritOff(moveToDo);

funection SummonInSpiritOff(moveToDo)
SummonS
a|| rmt(

_;ll r "'.,."r '.J\J‘-—"‘

else

{

if (selectedCha »ata.l .Hr-.’-,'w\'-\-‘L..-"k"."..".'}'.':-[:.["-J'

{

currentM D = selectedCharacter.UniqueData.SpiritOnMoveset

with Ii‘ill r b"‘_;tljw_'\":\
{

OverwriteSpiritMoveset(true)

1

SummonInSpiritOff begins by running another script called SummonSpirit.

[function SummonSpirit()

if (spiritSummoned)

{

if (spirit.Name == "SmoothCriminal®)

var Sp\f‘ITFIf‘E = instance_create_layer(spiritOb ject.x, spiritObjecty, "Instances”
spiritFire.depth = depth + 1

SummonSpirit creates an instance of the SC object and sets all of the necessary
data so Jay can control him.

SummonInSpiritOff is supposed to keep Jay in Spirit OFF while still summoning
SC, so it reverts some data. However, if the move is supposed to summon SC
proper, then it switches the moveset too and it runs the following block of code in
SC’s Step.

if (nSpiritOff && state |= startingMove && s

{

Overw SpiritMoveset(false)

nSpiritOff = 1
)
Once SC’s move ends in Spirit OFF and it enters the Idle, Crouch, Walk, Run

(both), or Jump/Jumpsquat states, it runs a script that destroys it called
DeactivateSpirit.

[function DeactivateSpirit(executedBySpirit)

Bl if (lexecutedBySpirit)

"Instances"

It runs two different versions: one where SC himself is activating it, and one
where something else activates it. Either way, it destroys the SC object and
reverts Jay back to Spirit OFF.

The next if statement is moreso a failsafe than anything else. It automatically
deactivates SC if he’s doing a move in Spirit OFF and Jay cancels into another
attack that doesn’t summon SC.

(selectedCharacter.UniqueData.SpiritData == 1 ate &é = noone && ImoveToDo.SpiritData.PerformInSpiritOff)

deactivateSpirit(false)

Now we enter the if statement that runs when the move finishes. First, the
moveset switching code was modified a little bit to factor in spirits if the character
has one. In this case, Jay does.

queData.LinkMovesetsWithSpirit

moveToDo.Switch

Character.Uniquel

tID = move ToDo.Switt

e Finally, it runs the code that activates/deactivates SC when the move is
supposed to do so completely.

e &é& I-p ritBroken)

if |:|'—;p|l'|'“;|"_':'l_"“
{

SummonSpirit();

DeactivateSpirit(false);

When SC performs an attack, slightly modified versions of PerformAttack and
oHitbox/Step2 play out.

e | setup SC’s hurtboxes and hitboxes so they are actually an extension of Jay’s.
This makes it easy to program things like combos between them and having
them both get hit at the same time. In order to set this, | set the owner of the
hitboxes and hurtboxes to Jay and then | created a variable in the hitbox and
hurtbox objects that get the spirit so they can get the spirit’s position.

e OHitbox/Step2 doesn’t have much that’s different about it, but | made a small
change where if SC attacks the opponent, it turns the opponent towards him
instead. The reason for this is for knockback to go in the correct direction. | also
modified ProcessHit for this purpose.

e In ProcessHit, | changed how knockback works so the direction the player flies is
based on their own orientation rather than the attacking player’s.

else if (attackProperty.Launches

sp = attackProperty.LaunchKnockbackVertica

noone && collision_list.owner.spiritState

p = attackProperty.Launc
sp = attackProperty.Launc
ded = fals

This is also where pendingToggle is put to use. If Jay gets hit while trying to

toggle his spirit state, it will toggle immediately and SC will take damage.

if (collision_list.owner.pendingToggle)

-= scaledDamage

collision_list.owner.spiritObject.knock ckBack ™ collision_list.owner.knockbackMultiplier
else

with (collision_list.owner)

If SC runs out of health, he is forcefully deactivated and Jay enters a Spirit Broken state,
where he cannot summon SC until he recovers. Activating this is handled in Sc’s Step.

Finally, because SC has his own health, he has his own health bar in the HUD. This
health bar will only show up if the player is playing as Jay.

